

110

УДК 511.138

## В. К. Шурыгин

# ЕДИНИЦЫ ПОРЯДКОВ ПОЛЕЙ ВИДА $Q(\sqrt[3]{D})$

Приведен алгоритм нахождения единиц полей кубических иррациональностей, основанный на итерационном процессе.

The article has the algorithm of finding units of cubic irrationalities fields based on iterative process.

**Ключевые слова:** поле алгебраических иррациональностей, модуль поля, единицы модуля поля, циклическая группа.

**Key words:** algebraic irrationalities fields, module of field, units of module of field, cyclic group.

В работе автора [1, с. 6] показано, что итерационный процесс

$$A_n = \delta A_{n-1}$$
,  $n = 0, 1, 2, \dots$  с матрицей  $\delta = \begin{pmatrix} a & cD & bD \\ b & a & cD \\ c & b & a \end{pmatrix}$  и  $A_{-1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ , где  $D - d$ 

фиксированное рациональное число, такое, что  $\sqrt[3]{D}$  — кубическая иррациональность; a, b, c — вообще говоря, произвольные рациональные

числа, приводит к последовательности подходящих векторов  $A_n = \begin{pmatrix} P_n \\ Q_n \\ R_n \end{pmatrix}$ 

периодической двумерной цепной дроби общего вида с однозвенным

периодом  $\begin{pmatrix} \Delta \\ 3 \left( bcD - a^2 \right) \\ 3a \end{pmatrix}$ , где  $\Delta = \det \delta$ . Эта цепная дробь сходится к не-

полному стандартному базису поля  $Q(\omega)$ :  $\lim_{n\to\infty}\frac{P_n}{R_n}=\omega^2$  ,  $\lim_{n\to\infty}\frac{Q_n}{R_n}=\omega$  ,  $\omega^3=D$ .

 $Q(\omega)$  — расширение поля рациональных чисел, оно образовано из поля Q рациональных чисел присоединением к нему иррациональности  $\omega$ .

Кроме отмеченной выше рекурсии можно рассмотреть еще две:

$$B_n = \delta \cdot B_{n-1}$$
,  $C_n = \delta \cdot C_{n-1}$ , где  $B_n = \begin{pmatrix} DR_n \\ P_n \\ Q_n \end{pmatrix}$ ,  $C_n = \begin{pmatrix} DQ_n \\ DR_n \\ P_n \end{pmatrix}$ ,  $P_{-1} = 1$ ,  $Q_{-1} = R_{-1} = 0$ .

Таким образом, имеет место  $M_n = \delta M_{n-1}$  ,  $M_n = \begin{pmatrix} P_n & DR_n & DQ_n \\ Q_n & P_n & DR_n \\ R_n & Q_n & P_n \end{pmatrix}$  .

Если далее  $M_0 = I$  — единичная  $3 \times 3$  матрица, то

$$M_n = \delta^{n+1}, n = 0, 1, 2...$$
 (1)



Совокупность матриц  $M_n$ ,  $n \in Z$  образует циклическую мультипликативную группу, в которой образующий элемент  $\delta$  или  $\delta^{-1}$ .

Заметим, что в  $Q(\omega)$  вводится hopma — функция  $N: Q(\omega) \to Q$ , которая для всякого  $\mu = a + b\omega + c\omega^2 \in Q(\omega)$ , согласно Делоне [2, с. 273], определяется соотношением  $N(\mu) = (a + b\omega + c\omega^2)(a + b\omega\xi + c\omega^2\xi^2)(a + b\omega\xi^2 + c\omega^2\xi)$ , где  $\xi = \exp\left(\frac{2\pi i}{3}\right)$  — первообразный кубический корень из единицы. Легко проверить, что  $N(\mu) = \Delta = a^3 + Db^3 + D^2c^3 - 3Dabc$ .

 $W_3$  выражения (1) запишем  $\det M_n = \Delta^{n+1}$ , то есть  $P_n^3 + DQ_n^3 + D^2R_n^3 - 3DP_nQ_nR_n = \Delta^{n+1}$ .

Если теперь n+1=3k , то вследствие полной мультипликативности нормы  $\left(\frac{P_{3k-1}}{\Delta^k}\right)^3 + D\left(\frac{Q_{3k-1}}{\Delta^k}\right)^3 + D^2\left(\frac{R_{3k-1}}{\Delta^k}\right)^3 - 3D\left(\frac{P_{3k-1}}{\Delta^k}\right)\left(\frac{Q_{3k-1}}{\Delta^k}\right)\left(\frac{R_{3k-1}}{\Delta^k}\right) = 1.$ 

То есть если  $\frac{P_{3k-1}}{\Delta^k}, \frac{Q_{3k-1}}{\Delta^k}, \frac{R_{3k-1}}{\Delta^k}$  — целые рациональные числа, то

 $\varepsilon = \frac{P_{3k-1}}{\Delta^k} + \frac{Q_{3k-1}}{\Delta^k} \omega + \frac{R_{3k-1}}{\Delta^k} \omega^2$  — единица порядка поля  $Q(\omega)$ . Такой же результат получается, если двумерную цепную дробь общего вида, полученную в работе [1, с. 10], с помощью тождественного преобразования [1, с. 5] удается привести к виду правильной. Например, если

$$a = p^2$$
,  $b = p$ ,  $c = 1$ , to  $(\omega^2, \omega) = \begin{bmatrix} T & T^2 \\ p & 2pT \\ p^2 & 3p^2 \end{bmatrix}$ ,  $T = D - p^3$  [1, c. 10].

Применение тождественного преобразования позволяет записать эту дробь в виде обыкновенной

$$\begin{bmatrix} p & 2p & (3pm & 3p & 3p \\ p^2 & 3p^2m & (3p^2m & 3p^2 & 3p^2m) \end{bmatrix},$$
 (2)

где m=1/T . Такое же разложение приведено у Бернштейна [3, с. 33]. Цепная дробь (2) оказывается правильной, если 3pm — целое рациональное, то есть T | 3p . Используя рекуррентные соотношения, имеющие место для элементов подходящих дробей обыкновенной двумерной, вычисляем  $P_2 = 9p^6m^2 + 9p^3m + 1$ ,  $Q_2 = 9p^5m^2 + 6p^2m$ ,  $R_2 = 9p^4m^2 + 3pm$ . Находим, что  $\Delta = p^6 + Dp^3 + D^2 - 3Dp^3 = \left(p^3 - D\right)^2$ ,  $P_2^3 + DQ_2^3 + D^2R_2^3 - 3DP_2Q_2R_2 = 1$ ,  $\varepsilon = \left(9p^6m^2 + 9p^3m + 1\right) + \left(9p^5m^2 + 6p^2m\right)\omega + \left(9p^4m^2 + 3pm\right)\omega^2$  — единица в  $Q(\omega)$ , даже единица порядка поля  $Q(\omega)$ , если  $\varepsilon$  — алгебраическое целое.

Похожий результат получается и из следующих рассуждений. Пусть опять  $\mu = a + b\omega + c\omega^2$ , а  $\nu \in Q(\omega)$ , причем  $\mu \cdot \nu = \Delta$ ,  $\Delta = N(\mu)$ .

Тогда 
$$N(\mu \cdot \nu) = \Delta^3$$
,  $N(\mu) \cdot N(\nu) = \Delta^3$ ,  $N(\nu) = \Delta^2$ .

Поскольку норма вполне мультипликативна, то при любом  $k \in Z$   $\mu^{3k} \cdot \nu^{3k} = \Delta^{3k}$ ,  $N(\mu^{3k}) \cdot N(\nu^{3k}) = \Delta^{9k}$ ,  $N(\mu^{3k}) = \Delta^{3k}$ ,  $N(\nu^{3k}) = \Delta^{6k}$ .

111



Из двух последних соотношений имеем  $N\left(\frac{\mu^{3k}}{\Delta^k}\right) = 1, N\left(\frac{\nu^{3k}}{\Delta^{2k}}\right) = 1.$ 

Следовательно, при всяком целом рациональном k  $\varepsilon = \frac{\mu^{3k}}{\Delta^k}$ ,  $\eta = \frac{v^{3k}}{\Delta^{2k}}$  — два единичных элемента в  $Q(\omega)$ , причем  $\eta = \varepsilon^{-1}$ .

Компоненты  $\varepsilon$  и  $\eta$  зависят от четырех параметров — a,b,c,k, и подобрать эти параметры так, чтобы  $\varepsilon$  и  $\eta$  были алгебраическими целыми, трудно. Однако если положить  $a=p^2$ , b=p, c=1, то несложно подсчитать несколько степеней  $\mu$  и  $\nu$ . При тех же обозначениях, что и выше, находим

$$\begin{split} \mu &= p^2 + p\omega + \omega^2, \, v = T(-p+\omega), \, \mu^2 = (3p^4 + 2pT) + (3p^3 + T)\omega + 3p^2\omega^2, \\ v^2 &= T^2(-p+\omega)^2 = T^2(p^2 - 2p\omega + \omega^2), \, v^3 = T^3(-p+\omega)^3 = T^3(T + 3p^2\omega - 3p\omega^2), \\ \mu^3 &= (9p^6 + 9p^3T + T^2) + (9p^5 + 6p^2T)\omega + (9p^4 + 3pT)\omega^2. \end{split}$$

Отсюда 
$$\varepsilon = \frac{\mu^3}{\Delta} = (9p^6m^2 + 9p^3m + 1) + (9p^5 + 6p^2m)\omega + (9p^4 + 3pm)\omega^2$$
, 
$$\varepsilon^{-1} = \frac{v^3}{\Delta^2} = (-p + \omega)^3m = 1 + 3p^2m\omega - 3pm\omega^2.$$

То есть если T | 3p , то ε и  $ε^{-1}$  — две единицы порядка. Более того,  $ε^{-1}$  можно придать вид  $ε^{-1} = \frac{(\omega - p)^3}{\omega^3 - p^3}$ .

В работе [4, с. 132] Бернштейн утверждает, что в случае целочисленности  $\varepsilon^{-1}$  — основная единица порядка в  $Q(\omega)$ .

#### Список литературы

- 1. *Шурыгин В. К.* К разложению кубических иррациональностей в двумерные цепные дроби. Калининград, 1996. Деп. в ВИНИТИ 22.11.96, №3396-В96.
- 2. Делоне Б. Н. Решение неопределенного уравнения  $x^3q + y^3 = 1$  // Известия российской Академии наук. 1922. Т. 6, 16. С. 273 280.
- 3. *Bernstein L.* Periodical continued fractions for irrationals of degree n by Jacobi's algorithm // J. reine und angew. Math. 1963. Vol. 213,  $\mathbb{N}$  1 2. P. 31 38.
  - 4. Bernstein L. On units and fundamental units // Ibid. 1972. Vol. 257. P. 129—145.

### Об авторе

Виктор Константинович Шурыгин — доц., Балтийский федеральный университет им. И. Канта, e-mail: nadejda-rgu@mail.ru.

#### Author

Viktor Shurygin — assistant professor, I. Kant Baltic Federal University, e-mail: nadejda-rgu@mail.ru.